Линейная скорость: формула нахождения

Содержание

Линейная скорость: формула нахождения

С точки зрения физики абсолютного покоя не существует. Каждое тело и частицы, которые его составляют, находятся в постоянном движении друг относительно друга. Важной кинематической величиной, характеризующей движение, является скорость. В данной статье приведем формулы линейной скорости для различных типов перемещения тел в пространстве.

Формула скорости — обозначение, единицы измерения и примеры нахождения

Довольно часто в точных науках приходится сталкиваться с понятием скорость. Формула, дающаяся в школе на уроке математики, справедлива лишь для частного случая, при котором перемещение остаётся всегда постоянным. По сути, термин обозначает быстроту изменения чего-либо. Существует несколько видов движения и методов расчета.

Формула скорости - обозначение, единицы измерения и примеры нахождения

Понятия о скорости, тангенциальном и нормальном ускорениях. Формулы

Чтобы уметь решать различные задачи на движение тел по физике, необходимо знать определения физических величин, а также формулы, с помощью которых они связаны. В этой статье будут рассмотрены вопросы, что такое тангенциальная скорость, что такое полное ускорение и какие компоненты его составляют.

Равномерное движение по окружности – характеристика, формулы и примеры вычислений

Понятие физического смысла равномерного движения по окружности

Кинематика, входящая в состав механики, занимается изучением закономерностей движения. Под этим понятием понимается изменение положения тела относительно других объектов. Основная задача науки состоит в определении координат рассматриваемого предмета в любой момент. Кинематика изучает перемещение без учёта воздействия его вызвавшего. Любое движение считается относительным. Поэтому для его описания используют систему координат с начальной и конечной точкой отсчёта.

Для облегчения понимания процессов размерами исследуемого тела пренебрегают. Считая, что любой объект представляет собой совокупность материальных точек, повторяющих одинаковое движение при сравнении с друг другом. Существует несколько видов изменения положения. Различают их по траектории — воображаемой линии, повторяющей путь прохождения объекта. Сравнивая виды движения, выделяют два типа перемещения: прямолинейное и криволинейное.

Кроме этого, если рассматривать изменение положения во времени, движение можно различать по равномерности. При перемещении с постоянной скоростью движение называют равномерным, а при изменении её — неравномерным.

Более узкая классификация разделяет перемещение по характеру на следующие виды:

Примеры нахождения характеристик

  • равноускоренное — это перемещение, обусловленное движением тела, при котором ускорение будет постоянным по направлению;
  • равнозамедленное — движение, при котором происходит отрицательное ускорение, до полного замедления объекта;
  • равнопеременное — при таком виде перемещения скорость изменяется на одинаковое значение в любом промежутке времени;
  • поступательное — если на перемещаемое тело нанести линии, они будут перемещаться параллельно сами себе;
  • вращательное — это периодическое движение, при котором материальная точка описывает окружность.

Частным случаем криволинейного движения, то есть по траектории, отличной от прямой линии, является равномерное движение по окружности. Определение понятия включает в себя центростремительное ускорение и постоянную по модулю скорость. Под этим видом понимают изменение положения, при котором изменяется только направление скорости.

Движение точки по окружности. Линейная и угловая скорости точки. Центростремительное ускорение точки

blank

Что такое линейная скорость?

Речь идет о физической величине, которая показывает, какое расстояние в пространстве проходит тело за единицу времени. Как правило, скорость обозначают буквой v¯, где символ черты говорит о том, что она является векторной величиной. Измеряется скорость в метрах в секунду (м/с), километрах в час (км/ч), милях в час (мил/ч) и других единицах, предполагающих отношение расстояния ко времени.

Вектор скорости v¯ показывает направление реального перемещения тела. Этим он отличается от вектора ускорения, который направлен в сторону действующей силы, но не в сторону движения тела, хотя они могут совпадать.

Угловая скорость.

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1 ).

Рис. 1. Равномерное движение по окружности

Пусть – начальное положение точки; иными словами, при точка имела координаты . Пусть за время точка повернулась на угол и заняла положение .

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

Угол , как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол . Поэтому

Сопоставляя формулы (1) и (3) , получаем связь линейной и угловой скоростей:

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Равноускоренное движение

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

В произвольно взятой точке скорость перемещения равна ускорению свободного падения.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r -1 (t). То есть, с математической точки зрения, это первая производная.

Исходя из этого можно утверждать, что движение Δs = v*Δt. Так как произведение ускорения на время определяется разницей V -V0, то верной будет запись: S = V0*t + A*t 2 /2 = (V 2 — V 2 0) /2*A.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V 2 0 — 2* A * s) ½ . Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s) ½ .

Понятие и основные термины

Под скоростью понимается величина, определяющая быстроту и направление перемещения материальной точки в выбранной системе отсчёта. Термин широко применяется в математике, физике, химии. Так, с его помощью описывают реакции, изменения температуры, передвижение тел, используют как производную рассматриваемой величины.

Слово «скорость» произошло от латинского «velocitas», обозначающее движение. В качестве единицы измерения, согласно Международной системе единиц (СИ), для неё выбран метр, делённый на секунду (м/с). Обозначается скорость буквой V, вне зависимости от науки, в которой её применяют. Простейшая формула, с помощью которой определяют величину, выглядит следующим образом: V = S: t. Где:

  • S — расстояние (путь), пройденное материальной точкой или телом (м);
  • T — время за которое она преодолела путь (с).

Формула скорости - обозначение, единицы измерения и примеры нахождения

Это обобщённое уравнение, но в то же время позволяющее получить представление о понятии. Часто это неравенство называют уравнением пути. Формула используется для вычисления только в том случае, если движение не изменяется на всём исследуемом участке.

Впервые с выражением знакомят учащихся на уроках математики в пятом классе. Учитель предлагает научиться решать простые задачи на нахождение характеристики при известной длине пройденного пути и потраченного на это времени. Например, автомобиль за четыре часа проехал 16 километров. Необходимо найти, с какой скоростью он двигался. Решение задачи сводится к двум действиям. В первом все заданные величины переводятся в систему СИ: 4 часа = 240 минут = 10240 секунд; 16 километров = 16000 метров. Во втором действии данные подставляют в формулу и вычисляют ответ: V = 16000/10240 = 1,6 м/с.

Но, помимо равномерного движения, то есть при котором скорость является константой, есть ещё и другие виды перемещений. Использовать обобщённое уравнение для них нельзя. Для каждого вида движения применяется своя формула. Существующую скорость разделяют на следующие виды:

Формула скорости - обозначение, единицы измерения и примеры нахождения

  • неравномерную;
  • среднюю;
  • равномерно-переменную;
  • поступательную;
  • вращательную;
  • ускоренную.

Характеристики движения

Равномерное движение по окружности: формула, определение

Перемещение по окружности характеризуется постоянной по модулю скоростью: |V| = const. При этом скорость точки может изменяться по направлению. Такое её поведение называют линейным. Равномерное изменение положения по окружности является перемещением с неким ускорением. Оно всегда имеет направление к центру и считается нормальным или центростремительным. Для обозначения параметра используется символ an по вектору.

При расчёте центростремительного ускорения по модулю используется формула: an = v2 / R, где: V — линейная скорость, R — радиус, по которому вращается тело. Но так как при решении заданий удобнее пользоваться не декартовой системой координат, а учитывать ещё радиус и угол поворота, то для формулы равномерного движение по окружности вводится дополнительный параметр — угловая скорость. Обозначается она буквой ω.

С помощью неё можно узнать быстроту изменения поворота при вращении. То есть определить угол φ. Угловая скорость — скалярная величина, для её нахождения используют следующую формулу: ω = Δ φ / Δ t. В качестве единицы измерения используют радиан, делённый на секунду (рад/с).

При использовании радиусных характеристик угол поворота ко времени обратно пропорционален периоду обращения T и прямо пропорционален два пи: ω = 2p / T = 2pV. При этом учитывается и то, что угловая связана с линейной скоростью равенством: V = ω * R. Учитывая это, модуль центростремительного ускорения можно вычислить по формуле: an = ω 2 * R.

Выражение же, описывающее перемещение при прямолинейном равноускоренном изменении, выглядит как Δ s = V 0 * Δ t + (a * Δ t)/2. Таким образом, при вращении перемещение определяется углом поворота. Для поступательного же движения пройденное расстояние равняется: Δ s = (V 2 — V 0 ) / 2a, а угловое ускорение находится из выражения: Δ φ = (ω 2 — ω0) / 2a.

За направление линейной скорости принимается путь по касательной к окружности. Например, при резке металла угловой шлифовальной машинкой искры, слетающие с диска, обозначают направление скорости.

Период определяет путь, который проходит тело за определённое время. При этом пройденное расстояние равняется длине окружности. Следует отметить, что при рассмотрении скорости, изменяющейся по величине при неравномерном вращении, используют два вида ускорения: касательное и тангенциальное.

Мгновенная и средняя скорости

Движение автомобиля

Как найти линейную скорость? Формулу, согласно определению величины, можно записать следующую:

Где dl¯ – вектор перемещения тела за время dt. Эта скорость называется мгновенной, поскольку рассчитывается за чрезвычайно короткий промежуток времени dt. Мгновенная скорость в действительности является величиной не стабильной и постоянно меняющейся. Например, представим, что по дороге движется автомобиль. На первый взгляд можно полагать, что в любой момент времени его мгновенная скорость будет постоянной, однако, это не так. Мгновенная скорость испытывает колебания. Если спидометр автомобиля достаточно чувствителен, то он фиксирует эти колебания.

Формула линейной скорости средней ничем не отличается от таковой для мгновенной, однако, измеряется она за более длительный промежуток времени Δt:

В примере с автомобилем выше, хотя мгновенная скорость испытывает колебания, средняя скорость остается постоянной с определенной точностью на всем участке пути Δl¯.

При решении задач, как правило, используют среднюю скорость. Мгновенная же величина имеет смысл только в случае движения с ускорением.

Закон движения.

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1 , что

Но из формулы (2) имеем: . Следовательно,

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

Формулы средней скорости

Вектор средней скорости ($leftlangle overline
ight
angle $) при движении между двумя точками определяют как:

где в скобках у вектора средней скорости указан промежуток времени, для которого найдена средняя скорость; $Delta overline$ – вектор перемещения точки; $Delta t$- время движения.

При неравномерном движении средняя скорость для разных промежутков времени не одинакова. Устремляя $Delta t$ к нулю, мы получим, что средняя скорость стремится к величине мгновенной скорости.

Иногда при вычислении средней скорости (ее называют средне путевой) применяют другую формулу:

[leftlangle v
ight
angle =fracleft(11
ight),]

где $s$- весь путь пройденный точкой; $t$ – все время ее движения. В этом случае средняя скорость – это скаляр.

Понятие об ускорении

Скорость и ускорение

В отличие от скорости, которая характеризует быстроту прохождения телом траектории, ускорение – это величина, описывающая быстроту изменения скорости, что математически записывается так:

Как и скорость, ускорение – это векторная характеристика. Однако его направление не связано с вектором скорости. Оно определяется изменением направления v¯. Если в процессе движения скорость не изменяет своего вектора, тогда ускорение a¯ будет направлено вдоль той же линии, что и скорость. Такое ускорение называют тангенциальным. Если же скорость будет менять направление, сохраняя при этом абсолютное значение, то ускорение будет направлено к центру кривизны траектории. Оно называется нормальным.

Измеряется ускорение в м/с2. Например, известное всем ускорение свободного падения является тангенциальным при вертикальном подъеме или падении объекта. Его величина вблизи поверхности нашей планеты составляет 9,81 м/с2, то есть за каждую секунду падения скорость тела увеличивается на 9,81 м/с.

Формула ускорения через скорость

Причиной появления ускорения является не скорость, а сила. Если сила F оказывает действие на тело массой m, то она неминуемо создаст ускорение a, которое можно вычислить так:

Эта формула является прямым следствием из второго закона Ньютона.

Нахождение ускорения тела

Характеристики движения

Любое криволинейное движение происходит с ускорением, так как в его ходе изменяется направление вектора скорости. Найти его — определить направление вектора и вычислить его модуль.

Окружность является самым простым видом криволинейного движения. Древние греки считали, что идеальная линия — это окружность. Можно представить, что тело движется по окружности с центром, который находится в точке O. Объект перемещается равномерно, и в какой-то момент его скорость станет V0. Вектор характеристики будет направлен по касательной и совпадать с направлением движения.

Через некоторое время тело переместится. Модуль этой скорости совпадёт с начальной. Поэтому справедливо будет записать: V0 ≠ V. Для нахождения ускорения следует решить два вопроса:

  • Определить направление вектора.
  • Найти модуль вектора ускорения.

Для ответа на первый вопрос нужно рассмотреть исходную формулу: a = ΔV / Δt. То есть найти, как изменится скорость за небольшой промежуток времени к длительности этого промежутка. Из формулы понятно, что, куда направлен вектор ΔV, в ту же сторону направлено и ускорение. Следует построить вектор изменения скорости частицы, движущейся равномерно по окружности. Для этого вектор V0 необходимо перенести параллельно самому себе в точку V.

По правилу треугольника можно построить вектор: ΔV = V — V0. Он будет направлен снизу вверх, образуя катет прямоугольного треугольника. Вектор V0 направлен по касательной к окружности, которая перпендикулярна радиусу r. Аналогичное рассуждение можно привести для вектора V0. Угол, образуемый этими отрезками в вершине O, очень мал и совпадает с углом, образованным векторами V, Vo, ΔV.

Вектор ΔV перпендикулярен вектору V, значит и вектор ускорения перпендикулярен вектору скорости. Можно утверждать, что вектор ускорения направлен к центру. Отсюда следует, что a направлен к центру окружности. Поэтому его и называют центростремительное ускорение.

Нахождение ускорения тела

Для нахождения модуля вектора используется зависимость: a = ΔV / Δt. Если известна скорость, с которой движется точка, то для нахождения её пути нужно её умножить на время (Δt). Таким образом, можно записать: ΔV / V = (V * Δt) / r. Это выражение легко упростить, умножив левую и правую часть на V / Δt. В итоге получится уравнение: V / Δt = V 2 / r. В левой части останется модуль центростремительного ускорения. Отсюда можно утверждать, что a = v 2 / r.

Самые популярные записи

  • blankСвобода и необходимость в человеческой деятельности. Свобода и ответственность. (1 166)
  • blankЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (1 134)
  • blankНаука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (1 068)
  • blankОбъединение русских земель вокруг Москвы. Создание единого Русского государства (1 031)

Центростремительное ускорение.

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5) :

С учётом формул (5) имеем:

Полученные формулы (6) можно записать в виде одного векторного равенства:

где – радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1 ). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

Выразим угловую скорость из (4)

и подставим в (8) . Получим ещё одну формулу для центростремительного ускорения:

Полное, нормальное и тангенциальное ускорения

Скорость и ускорение как физические величины были рассмотрены в предыдущих пунктах. Теперь мы подробнее изучим, какие компоненты составляют полное ускорение a¯.

Предположим, что тело движется со скоростью v¯ по криволинейной траектории. Тогда будет справедливо равенство:

Вектор u¯ имеет единичную длину и направлен вдоль касательной линии к траектории. Воспользовавшись таким представлением скорости v¯, получим равенство для полного ускорения:

Полученное в правом равенстве первое слагаемое называется тангенциальным ускорением. Скорость связана с ним тем фактом, что она количественно определяет изменение абсолютного значения величины v¯, не принимая во внимание ее направление.

Второе слагаемое – это нормальное ускорение. Оно количественно описывает изменение вектора скорости, не принимая во внимание изменение ее модуля.

Скорость и полное ускорение

Если обозначить как at и an тангенциальную и нормальную составляющие полного ускорения a, тогда модуль последнего можно вычислить по формуле:

Помощь

© 2021 StudyWay. Все права защищены.

Скорость при движении по прямой с ускорением

Прямолинейное движение с ускорением

Когда появляется внешняя сила, то ее действие на тело приводит к изменению скорости тела. В динамике эта ситуация описывается вторым законом Ньютона:

Если действие силы F¯ происходит на покоящееся изначально тело массой m, то формула нахождения линейной скорости в любой момент времени t примет вид:

В данном случае обе векторные величины направлены в одну и ту же сторону. Эта формула может применяться для описания разгона какого-либо транспортного средства.

Теперь предположим, что автомобиль двигался с некоторой скоростью v0¯, а затем начал останавливаться. В этой случае соответствующее кинематическое уравнение примет вид:

Поскольку модуль скорости |v¯| авто будет уменьшаться со временем, в скалярной форме это равенство запишется так:

В данном случае вектора скорости и ускорения направлены в противоположных направлениях.

Все формулы линейной скорости, приведенные в этом пункте, описывают прямолинейное движение с постоянным ускорением.

Занимательный пример

Пусть имеется некая планета, которая совершила полтора оборота за сорок два часа, при этом метеостанция, располагающаяся на её экваторе, прошла путь равный 50 тыс. километров, делённых на час. Нужно определить линейную и угловую скорости планеты при её вращении вокруг собственной оси. Кроме этого, вычислить, чему равны сутки, и найти радиус планеты. При этом считать, что форма космического тела — идеальный шар.

Для решения задачи следует обозначить буквой эн число оборотов: n = 1,5, а t — время, за которое планета их совершила. Путь же, который прошла станция, можно представить в виде материальной точки и принять за l = 50 000 км. Найти же будет нужно линейную и угловую скорости. Кроме этого, по условию задачи нужно найти сутки, длина которых равняется периоду — полному обороту планеты вокруг оси.

В такой задаче необязательно переводить данные в систему СИ. Можно использовать километры и часы, так как в задании не требуется дать ответ в соответствии с СИ, тем более что метры и секунды использовать неудобно.

Первое, что можно найти, это линейную скорость, равную отношению пройденного пути ко времени: v = l / t = 50000 / 42. Решив дробь, примерный результат будет равняться 1190 км /ч. Теперь можно найти скорость угла поворота. Нужно разделить угол, на который изменилось положение точки, на время. Так как один полный оборот — это 2p, то полтора оборота будут составлять 3p. Тогда искомая скорость будет равняться: w = φ / t = 3p / 42 = 0,22 рад/ч.

Равномерное движение по окружности

Сутки, то есть период обращения, будут определяться как полный период вращения, который можно разделить на число оборотов за это время. Формула для расчёта будет выглядеть следующим образом: T = t / N. Подставив значения, можно найти искомый период. Он будет составлять: T = 42 / 1,5 = 28 часов.

Осталось вычислить радиус, который равняется отношению линейной скорости к угловой: R = v / w. Так как в качестве ответов записывались примерные значения, то для предотвращения арифметической ошибки подставлять уже найденные числа не следует. Поэтому лучше подставить алгебраические выражения. Тогда: R = (l /t) / (φ / t) = l / φ = 50000 / 3p = 5305 км. Задача решена.

Вращение тел

Линейная и угловая скорость

Под вращением понимают тип движения, при котором траектория перемещающегося тела представляет собой окружность. Вращение может происходить вокруг оси или вокруг фиксированной точки. Вращение колеса, планет по своим орбитам, спортсменов во время соревнований по фигурному катанию – все это примеры указанного типа движения.

По аналогии с линейным перемещением, главной формулой динамики вращения является следующая:

Здесь M и I – моменты силы и инерции, соответственно, α – ускорение угловое.

Для описания вращения удобно пользоваться не линейной, а угловой скоростью. Она определяется так:

Где θ – угол, на который тело повернулось за время t. С записанным ускорением α скорость ω связана следующим равенством:

Для измерения всех угловых величин используются радианы.

Использование онлайн-калькулятора

Онлайн-калькулятор по физике

В интернете существуют сервисы, позволяющие находить параметр даже тем, кто не знает формулы или слабо ориентируется в теме. С их помощью можно решать довольно сложные задания, которые требуют скрупулёзного расчёта и немалой затраты времени. Онлайн-вычисление обычно занимает не более нескольких секунд, а за достоверность результата можно не беспокоиться.

Воспользоваться сайтами-калькуляторами сможет любой пользователь, имеющий подключение к интернету и установленный веб-браузер с поддержкой Flash-технологии. Никакой регистрации или указания личных данных сервисы, предлагающие такого рода услуги, не требуют. Система автоматически рассчитает ответ.

Из множества сайтов можно выделить три наиболее популярных среди потребителей:

  1. Справочный портал «Калькулятор».
  2. Allcalc.
  3. Fxyz.

Все они имеют интуитивно понятный интерфейс и, что примечательно, на своих страницах содержат таблицы всех формул, используемых для решения заданий, правильные условные обозначения и описания процессов вычисления.

Расчёт скорости любого тела несложен. Главное, знать формулы и правильно определить вид перемещения. При этом всегда можно воспользоваться услугами онлайн-калькуляторов. Через них решить поставленную задачу или проверить свои расчёты.

Примеры задач с решением

Задание. Положение материальной точки, задано радиус-вектором $overlineleft(t
ight),$ который является функцией времени: $overlineleft(t
ight)=^4overline+t^2overline,$ где $overline$ и $overline$ – единичные векторы осей X и Y (рис.1). Чему равен модуль скорости точки в момент времени $t=1$c?

Решение. В качестве основы для решения задачи воспользуемся формулой скорости:

Подставим в выражение (1.1) $overlineleft(t
ight)=t^4overline+3t^2overline,$ получим:

[overline=frac

left(^4overline+t^2overline
ight)=8t^3overline+2toverline left(1.2
ight).]

Из уравнения (1.2) имеем:

Формула линейной скорости, пример 1

Используя теорему Пифагора, величину скорости вычислим как:

Ответ. $v=sqrtfrac$

Задание. С какой скоростью должен лететь самолет с востока на запад на широте $varphi $, чтобы за окном иллюминатора всегда было светло? Радиус Земли считать равным R.

Решение. Сделаем рисунок.

Формула линейной скорости, пример 2

Самолет летит по окружности (рис.2), радиус которой найдем как:

Для того чтобы не наступала ночь, тело должно двигаться с угловой скоростью, которая равна скорости вращения Земли вокруг своей оси ($omega $). Для вычисления скорости движения самолета воспользуемся формулой:

Угловую скорость вращения Земли найдем, зная, что период вращения Земли составляет 24 ч ($T=24 ч$), следовательно, величину угловой скорости вращения Земли можно считать известной и равной:

Скорость и нормальное ускорение

Тангенциальная скорость и ускорение

Запишем в явном виде формулу для нормальной компоненты an, имеем:

Где re¯ – единичной длины вектор, который к центру кривизны траектории направлен. Это выражение устанавливает связь тангенциальной скорости и нормального ускорения. Видим, что последнее зависит от модуля v в данный момент времени и от радиуса кривизны r.

Нормальное ускорение появляется всегда, когда изменяется вектор скорости, однако оно равно нулю, если этот вектор сохраняет направление. Говорить о величине an¯ имеет смысл только тогда, когда кривизна траектории является конечной величиной.

Выше мы отмечали, что при движении по прямой линии нормальное ускорение отсутствует. Однако в природе существует тип траектории, при движении по которой an имеет конечную величину, а at = 0 при |v¯| = const. Этой траекторией является окружность. Например, вращение с постоянной частотой металлического вала, карусели или планеты вокруг собственной оси происходит с постоянным нормальным ускорением an и нулевым тангенциальным ускорением at.

Формула линейной скорости вращения

Вращение фигуриста

Выше отмечалось, что вращение удобно описывать в угловых характеристиках. Тем не менее в некоторых случаях важно знать, чему равна линейная скорость по окружности. Формула для этого случая приведена ниже:

Здесь r – радиус окружности, равный расстоянию от любой точки траектории тела до оси вращения. Связывающую линейную и угловую скорость формулу получить несложно самостоятельно. Для этого достаточно рассмотреть, какое расстояние по окружности преодолеет тело за известное время t.

Приведенное выражение можно использовать для вычисления линейных скоростей космических тел, например, нашей Земли, вращающейся вокруг Солнца.

Линейная скорость и центростремительное ускорение

Скорость является величиной векторной. Это означает, что тело получает ускорение не только при изменении модуля величины v, но и при изменении ее направления. Последняя ситуация реализуется во время вращения. Вектор мгновенной скорости тела всегда направлен по касательной к окружности. Если за равные промежутки времени тело описывает равные углы относительно центра вращения, то такое движение является равномерным с точки зрения модуля скорости.

Отклонение от прямолинейного движения во время вращения происходит за счет действия центростремительной силы, вызывающей центростремительное ускорение. Оно направлено всегда перпендикулярно скорости, поэтому изменить ее модуль не может. Ускорение центростремительное ac можно вычислить по формуле:

Абсолютная величина ускорения ac показывает, насколько велики центробежные силы, связанные с инерцией вращающегося тела. Практическим примером является занос автомобиля во время крутого поворота. Заметим, что с уменьшением радиуса ac растет медленнее, чем с увеличением линейной скорости.

Задача на определения линейной скорости нашей планеты

Вращение Земли вокруг Солнца

Каждый человек понимает, что если автомобиль движется со скоростью 100 км/ч, то эта цифра является достаточно большой в сравнении со скоростями, с которыми люди сталкиваются в повседневной жизни. Любопытно сравнить указанную цифру со скоростью вращения Земли по своей орбите.

Для оценки этой скорости возьмем следующие данные:

  • радиус орбиты – 150 млн км;
  • период одного оборота – 365 земных дней.

Для определения требуемой величины воспользуемся формулой линейной и угловой скорости:

Значение ω через период T определяется так:

Тогда для v приходим к равенству:

Подставляя данные из условия задачи, получим линейную скорость 107,5 тысяч км/ч! Эта цифра означает, что наша Земля перемещается в космическом пространстве в 1000 раз быстрее, чем автомобиль движется по дороге. Мы не чувствуем этой гигантскую скорости, поскольку силы гравитации Земли увлекают за собой атмосферу так, что она находится в покое относительно поверхности планеты.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий